146 research outputs found

    Labelling of Protein Fractions of Fasciola hepatica Antigen with 125I

    Full text link

    Autonomous photovoltaic system for night-time lighting in the stable

    Get PDF
    ArticleAutonomous photovoltaic (PV) systems are suitable, for example, for powering various appliances or scientific instruments in the field, for automatic data collection, for signaling, etc. At the Czech University of Life Sciences Prague, we have designed an experimental autonomous PV system designed for night-time lighting for orientating in a stable for horses. The article describes the construction of a PV system with a PV panel rated at 170 Wp, with a lead-acid accumulator and a 1,5 W LED light source. The data collection was automated. The data evaluation shows that during the whole year, the PV system has been recharged and there was no lighting failure. The paper also presents important measured characteristics

    Operation of the photovoltaic system in Prague and data evaluation

    Get PDF
    Received: January 6th, 2021 ; Accepted: April 7th 2021 ; Published: April 12th 2021 ; Correspondence: [email protected] on-grid photovoltaic system was installed at the Faculty of Engineering in 2015. The monitoring system developed in our laboratory monitors data and can also detect failure and type of failure. The evaluation of the data shows that the amount of electricity produced slightly exceeds the expected values predicted by the internationally used internet application PVGIS. The effect of the aging of PV panels has so far had a minimal effect on the electricity produced. Immediate output power is affected by multiple parameters. Higher temperatures reduce the efficiency of energy conversion, so in summer the instantaneous power may be lower even at higher radiation intensity and smaller angle of incidence

    Models agree on forced response pattern of precipitation and temperature extremes

    Get PDF
    Model projections of heavy precipitation and temperature extremes include large uncertainties. We demonstrate that the disagreement between individual simulations primarily arises from internal variability, whereas models agree remarkably well on the forced signal, the change in the absence of internal variability. Agreement is high on the spatial pattern of the forced heavy precipitation response showing an intensification over most land regions, in particular Eurasia and North America. The forced response of heavy precipitation is even more robust than that of annual mean precipitation. Likewise, models agree on the forced response pattern of hot extremes showing the greatest intensification over midlatitudinal land regions. Thus, confidence in the forced changes of temperature and precipitation extremes in response to a certain warming is high. Although in reality internal variability will be superimposed on that pattern, it is the forced response that determines the changes in temperature and precipitation extremes in a risk perspective

    Design and data comparison of the photovoltaic power plants in the southern and northern hemispheres

    Get PDF
    We have recently developed a unique monitoring system for photovoltaic power plants and have gradually improved it in recent years. The system is installed at about 80 power plants in several European countries and at one power plant in Chile. We collect and evaluate all data in our laboratory. In this paper we describe the unique design of a photovoltaic power plant in the southern hemisphere in Chile with photovoltaic panels installed on tracking stands. We present the evaluated data and we discuss their comparison with photovoltaic power plants installed in Europe. We also discuss different solar conditions of these locations

    RADIOLUCENT COMPOSITES PROVIDING HIGH RESISTANCE AGAINST STERILIZATION DECOMPOSITION

    Get PDF
    We present a study of radiolucent composite materials for use in medicine, providing suitable mechanical properties and high resistance against sterilization decomposition. The composites are composed of carbon (C), aramid or glass (R-glass) fabrics embedded in polydimethylsiloxane (PDMS), polyetheretherketone (PEEK) or polyphenylene sulfide (PPS) matrix. The effect of multiple steam sterilization processes on degrading the mechanical properties, structural integrity and hydrolytic decomposition of the composites was verified. The radiolucency of the composites was also investigated. The mechanical performance of ARAMID/PDMS composite is strongly influenced by the sterilization technique that is applied. The mechanical behavior of R-glass/PDMS composite during steam sterilization is negatively influenced by its porosity. The relatively high porosity of C/PDMS composite may lead to lower ultimate bending strength values, but in general its mechanical behavior is influenced only at a low rate by steam sterilization. On the basis of our analyses, we can state that both C/PEEK and C/PPS composites are good candidates for application as radiolucent materials providing resistance against sterilization decomposition

    WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis.

    Get PDF
    WNTs are lipid-modified proteins that control multiple functions in development and disease via short- and long-range signaling. However, it is unclear how these hydrophobic molecules spread over long distances in the mammalian brain. Here we show that WNT5A is produced by the choroid plexus (ChP) of the developing hindbrain, but not the telencephalon, in both mouse and human. Since the ChP produces and secretes the cerebrospinal fluid (CSF), we examine the presence of WNT5A in the CSF and find that it is associated with lipoprotein particles rather than exosomes. Moreover, since the CSF flows along the apical surface of hindbrain progenitors not expressing Wnt5a, we examined whether deletion of Wnt5a in the ChP controls their function and find that cerebellar morphogenesis is impaired. Our study thus identifies the CSF as a route and lipoprotein particles as a vehicle for long-range transport of biologically active WNT in the central nervous system.We thank Nadia Wänn for maintenance of mice colonies; the members of Bryja and Arenas lab for their help and suggestions; Martin Häring for help with in situ analysis; Johnny Söderlund and Alessandra Nanni for their technical and secretarial assistance; and the CLICK imaging facility at Karolinska Institutet for technical support. We thank MEYS CR for support to the following core facilities: Proteomics (CIISB research infrastructure project LM2015043), cellular imaging at CEITEC institution at Masaryk University (LM2015062 Czech-BioImaging) Czech Centre for Phenogenomics (LM2015040), Higher quality and capacity of transgenic model breeding (by MEYS and ERDF, OP RDI CZ.1.05/2.1.00/19.0395), Czech Centre for Phenogenomics: developing towards translation research (by MEYS and ESIF, OP RDE CZ.02.1.01/0.0/0.0/16_013/0001789). The collaboration between Masaryk University and Karolinska Institutet (KI-MU program), was co-financed by the European Social Fund and the state budget of the Czech Republic (CZ.1.07/2.3.00/20.0180). Funding to the VB lab was obtained from Neuron Fund for Support of Science (23/2016), and Czech Science Foundation (GA17-16680S). Work in the EA lab was supported by the Swedish Research Council (VR projects: DBRM, 2011-3116, 2011-3318 and 2016-01526), Swedish Foundation for Strategic Research (SRL program and SLA SB16-0065), European Commission (NeuroStemcellRepair), Karolinska Institutet (SFO Strat Regen, Senior grant 2018), Hjärnfonden (FO2015:0202 and FO2017-0059) and Cancerfonden (CAN 2016/572). Research in the JCV lab was supported by Karolinska Institutet Foundations. KK was supported by Masaryk University (MUNI/E/0965/2016). DP and ZZ were supported by the CEITEC 2020 (LQ1601) project from MEYS CR

    A State of the Art on Railway Simulation Modelling Software Packages and Their Application to Designing Baggage Transfer Services

    Get PDF
    There is a new baggage transfer service suggested in Newcastle Central Station. In order to prove that this service is feasible, a simulation model can be developed to test the concept and operating pattern behind. For the purposes of this paper, we intend to organize a literature review on simulation modelling software packages employed to study service design. Specifically, this paper has compared five different simulation software packages used by the railway industry to study service-related challenges. As a result, it is suggested that SIMUL8, a macroscopic discrete event-based software package, should be used among the five compared ones because of its simplicity and the ability to give practical results for the design and performance of such a baggage transfer system

    A scientific critique of the two-degree climate change target

    Get PDF
    The world's governments agreed to limit global mean temperature change to below 2-derees C compared with pr-industrial levels in the years following the 2009 climate conference in Copenhagen. This 2-degrees C warming target is perceived by the pulic as a universally accepted goal, identified by scientists as a safe limit that avoids dangerous climate change. This perception is incorrect: no scientific assessment has clearly justified or defended the 2-degrees C target as a safe level of warming, and indeed, this is not a problem that science alone can address. We argue that global temperature is the best climate target quantity, but it is unclear what level can be consiered safe. The 2-degrees C target is useful for anchoring discussions, but has been ineffective in triggering the required emission reductions; debates on considering a lower target are strongly at odds with the current real-world level of action. These debates are moot, however, as the decisions that need to be taken now to limit warming to 1.5 or 2 degrees C are very similar. We need to agree how to start, not where to end mitigation

    Ecological character displacement in the face of gene flow: Evidence from two species of nightingales

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecological character displacement is a process of phenotypic differentiation of sympatric populations caused by interspecific competition. Such differentiation could facilitate speciation by enhancing reproductive isolation between incipient species, although empirical evidence for it at early stages of divergence when gene flow still occurs between the species is relatively scarce. Here we studied patterns of morphological variation in sympatric and allopatric populations of two hybridizing species of birds, the Common Nightingale (<it>Luscinia megarhynchos</it>) and the Thrush Nightingale (<it>L. luscinia</it>).</p> <p>Results</p> <p>We conducted principal component (PC) analysis of morphological traits and found that nightingale species converged in overall body size (PC1) and diverged in relative bill size (PC3) in sympatry. Closer analysis of morphological variation along geographical gradients revealed that the convergence in body size can be attributed largely to increasing body size with increasing latitude, a phenomenon known as Bergmann's rule. In contrast, interspecific interactions contributed significantly to the observed divergence in relative bill size, even after controlling for the effects of geographical gradients. We suggest that the divergence in bill size most likely reflects segregation of feeding niches between the species in sympatry.</p> <p>Conclusions</p> <p>Our results suggest that interspecific competition for food resources can drive species divergence even in the face of ongoing hybridization. Such divergence may enhance reproductive isolation between the species and thus contribute to speciation.</p
    corecore